Abstract

Efficient enantioselective Cu-catalyzed allylic alkylations of aromatic and aliphatic allylic phosphates bearing di- and trisubstituted olefins are disclosed. Enantioselective C-C bond forming reactions are promoted in the presence of 10 mol % readily available chiral amino acid-based ligand (5 steps, 40% overall yield synthesis) and 5 mol % (CuOTf)2 x C6H6. Reactions deliver tertiary and quaternary stereogenic carbon centers regioselectively and in 78-96% ee. Data regarding the effect of variations in ligand structure on the efficiency and enantioselectivity of the alkylation process, as well as a mechanistic working model, are presented. The suggested model involves a dual role for the chiral Cu complex: association of the Cu(I) center to the olefin is facilitated by a two-point binding between the carbonyl of the ligand's amide terminus and the P=O of the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.