Abstract

A polynomial system is a real autonomous system of ordinary differential equations on the plane with polynomial nonlinearities:with aij, bij ∈ ℝ and where x = x(t) and y = y(t) are real-valued functions.The problem of analysing limit cycles (isolated periodic solutions) in polynomial systems was first discussed by Poincaré[16]. Then, in the famous list of 23 mathematical problems stated in 1900, Hilbert[9] asked in the second part of the 16th problem for an upper bound for the number of limit cycles for nth degree polynomial systems, in terms of n. Recently, it has been proved that, given a particular choice of coefficients for a system of form (1·1), the number of limit cycles is finite. This result is known as Dulac's theorem, see Ecalle[8] or Il'yashenko[10]. However, it is unknown whether or not there exists an upper bound for the number of limit cycles in system (1·1) in terms of n. Even for quadratic systems (i.e. polynomial systems with quadratic nonlinearities) this remains an open question.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.