Abstract

Cubic mesoporous titanium phosphonate materials with bridged organic groups inside the framework were synthesized by means of a one-pot hydrothermal autoclaving process, with the assistance of cationic surfactant cetyltrimethylammonium bromide. 1-Hydroxyethylidene-1,1-diphosphonic acid was used as the coupling molecule. A typical cubic mesophase with surface area of 1052 m(2) g(-1) and pore size of 2.6 nm was confirmed by XRD, TEM, and N(2) sorption analysis. The organophosphonate groups were homogeneously incorporated in the network of the mesoporous solids, as revealed by FTIR and magic-angle spinning (MAS) NMR spectroscopy, and thermogravimetry and differential scanning calorimetry (TG-DSC) measurements. The synthesized hydroxyethylidene-bridged cubic mesoporous titanium phosphonates proved to be thermally stable up to 350 degrees C, with a well-preserved hybrid framework and cubic mesoporous architecture. The obtained cubic mesophase could be transformed into a hexagonal mesophase by simply adjusting the molar ratios of the added raw materials, namely, a Ti/P molar ratio of 1:4 and a CTAB/Ti molar ratio of 1.9-2.3 for the cubic phase and Ti/P molar ratio of 3:4 and CTAB/Ti molar ratio of 0.1-0.4 for the hexagonal phase. The cubic hybrid materials could be used as efficient photocatalysts for the photodegradation of rhodamine B. Moreover, they were also used for adsorption of CO(2) and heavy metal ions and exhibited a significant capture amount of around 1.0 mmol g(-1) for CO(2) molecules at 35 degrees C and high adsorption capacity of 28.5 micromol g(-1) for Cu(2+) ions with good reusability, which demonstrated their promising potential in environmental remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.