Abstract
For a general nonsingular cubic fourfold $X\subset \PP^5$ and $e\geq 5$ an odd integer, we show that the space $M_e$ parametrizing rational curves of degree $e$ on $X$ is non-uniruled. For $e \geq 6$ an even integer, we prove that the generic fiber dimension of the maximally rationally connected fibration of $M_e$ is at most one, i.e., passing through a very general point of $M_e$ there is at most one rational curve. For $e < 5$ the spaces $M_e$ are fairly well understood and we review what is known.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have