Abstract
Spacecraft charging affects the accuracy of in-situ plasma measurements in space. We investigate the impact of spacecraft charging on upper thermospheric plasma measurements captured by a 2U CubeSat called Phoenix. Using the Spacecraft Plasma Interactions Software (SPIS), we simulate dayside surface potentials of − 0.6 V, and nightside potentials of − 0.2 V. We also observe this charging mechanism in the distribution function captured by the Ion and Neutral Mass Spectrometer (INMS) on-board Phoenix. Whilst negative charging in the dense ionosphere is known, the diurnal variation in density and temperature has resulted in dayside potentials that are smaller than at night. We apply charging corrections in accordance with Liouville’s theorem and employ a least-squares fitting routine to extract the plasma density, bulk speed, and temperature. Our routine returns densities that are within an order of magnitude of the benchmarks above, but they carry errors of at least 20%. All bulk speeds are greater than the expected range of 60–120 m/s and this could be due to insufficient charging corrections. Our parameterised ion temperatures are lower than our empirical benchmark but are in-line with other in-situ measurements. Temperatures are always improved when spacecraft charging corrections are applied. We mostly attribute the shortcomings of the findings to the ram-only capture mode of the INMS. Future work will improve the fitting routine and continue to cross-check with other in-flight data.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have