Abstract
In the present work, we described the synthesis and characterization of the ternary Cu2O/CuS/ZnS nanocomposite using a facile two-step wet chemical method for blue LED-light-induced photocatalytic hydrogen production. The concentrations of the ZnS precursor and reaction time were essential in controlling the photocatalytic hydrogen production efficiency of the Cu2O/CuS/ZnS nanocomposite under blue LED light irradiation. The optimized Cu2O/CuS/ZnS nanocomposite exhibited a maximum photocatalytic hydrogen evolution rate of 1109 µmolh−1g−1, which was remarkably higher than Cu2O nanostructures. Through the cycle stability it can be observed that the hydrogen production rate of the Cu2O/CuS/ZnS nanocomposite decreased after 4 cycles (1 cycle = 3 h), but it remained at 82.2% of the initial performance under blue LED light irradiation. These reasons are mainly attributed to the introduction of CuS and ZnS to construct a rationally coupled reaction system, which enables the synergistic utilization of photogenerated carriers and the increased absorption of visible light for boosting blue LED-light-driven photocatalytic hydrogen evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.