Abstract

In this study, semiconductor oxide cuprite (Cu2O) and indium tin oxide (ITO) heterojunction solar cells with and without a 10 nm thick titanium (Ti) thin film as the buffer layer were fabricated and characterized for comparison. The Cu2O film was formed by low-cost electrodeposition, and Ti and ITO layers were deposited on a glass substrate by sputtering. The interfacial microstructures, surface topology, and electrical and photovoltaic properties of both solar cells were investigated. The test results showed that the Ti buffer layer changed the surface morphology, resistivity, and contact potential of the electrodeposited Cu2O film. With these changes, the photovoltaic performances of the Cu2O/Ti/ITO solar cell including open-circuit voltage (VOC) and short-circuit current (ISC) were all enhanced compared to the Cu2O/ITO solar cell, and the power conversion efficiency was improved from 1.78% to 2.54%. This study offers a promising method to improve the efficiency of Cu2O-based solar cells for sustainability in material resource, environment and eco-system, and energy production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.