Abstract

In this study, a novel multifunctional nanocomposite wound dressing was developed, consisting of TEMPO-oxidized bacterial cellulose (TOBC) nanofibers functionalized with donut-like copper-based metal–organic frameworks (CuVB3 MOFs). These CuVB3 MOFs were constructed using copper nodes linked by vitamin B3 molecules, resulting in a copper nicotinate crystal structure as confirmed by X-ray diffraction. Electron microscopy confirmed the presence of donut-like microstructures with uniform element distribution in the synthesized MOFs. Through the incorporation of CuVB3 MOFs into the TOBC nanofibers, innovative TOBC-CuVB3 nanocomposites were created. Biocompatibility testing using the MTT assay demonstrated enhanced cell viability of over 115% for the TOBC-CuVB3 nanocomposite. Acridine Orange staining revealed a ratio of 88–92% live cells on the wound dressings. Furthermore, fibroblast cells cultured on TOBC-CuVB3 exhibited expanded morphologies with long filopodia. The agar diffusion method exhibited improved antibacterial activity against both Gram-positive and Gram-negative bacterial strains, correlating with increased CuVB3 concentration in the samples. In vitro cellular scratch assays demonstrated excellent wound healing potential, with a closure rate of over 98% for wounds treated with the TOBC-CuVB3 nanocomposite. These findings underscore the synergistic effects of copper, vitamin B3, and TOBC nanofibers in the wound healing process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call