Abstract
A series of porous cubic nanomaterials have been prepared through a facile one-step selenylation process, in which Cu-Ni-Co, Ni-Co and Cu-Co Prussian-blue analog nanocubes transformed to Cu-Ni-CoSex, Ni-CoSex and Cu-CoSex nanocubes, respectively. Among these samples, the quaternary porous nanocubes (Cu-Ni-CoSex) proved to be the excellent bifunctional electrocatalysts in dye-sensitized solar cells and hydrogen evolution reactions. Under the standard irradiation, Cu-Ni-CoSex nanocubes exhibited a high power conversion efficiency of 9.74% in solar cells, which was much superior than that of Pt (8.19%). Cu-Ni-CoSex nanocubes also delivered superb hydrogen evolution performance in terms of a low overpotential (50.2 mV) under the current density of 10 mA cm−2 and a low Tafel slope (49.6 mV dec−1) in alkaline medium. The outstanding characteristics of Cu-Ni-CoSex nanocubes were benefited from their uniform sizes, porous morphologies, high surface area, low charge transfer resistances and good synergies among multiple elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.