Abstract

Transition metal ion-doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self-absorption/energy transfer, longer excited-state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near-infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu-doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu-doped QDs that are capable of NIR emission. Applications of Cu-doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu-doped QDs for bioanalysis and bioimaging are also summarized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call