Abstract

Doping quantum dots (QDs) with extra element presents a promising future for their applications in the fields of environmental monitoring, commercial products and biomedical sciences. However, it remains unknown for the influence of doping on the molecular biocompatibility of QDs and the underlying mechanisms of the interaction between doped-QDs and protein molecules. Using the “one-pot” method, we synthesized N-acetyl-l-cysteine capped CdTe: Zn2+ QDs with higher fluorescence quantum yield, improved stability and better molecular biocompatibility compared with undoped CdTe QDs. Using digestive enzyme trypsin (TRY) as the protein model, the interactions of undoped QDs and Zn-doped QDs with TRY as well as the underlying mechanisms were investigated using multi-spectroscopy, isothermal titration calorimetry and dialysis techniques. Van der Waals forces and hydrogen bonds are the major driving forces in the interaction of both QDs with TRY, which leading to the loosening of protein skeleton and tertiary structural changes. Compared with undoped QDs, Zn-doped QDs bind less amount of TRY with a higher affinity and then release higher amount of Cd. Zn-doped QDs have a less stimulating impact on TRY activity by decreasing TRY binding and reducing Cd binding to TRY. Taken all together, Zn-doped QDs offer a safer alternative for the applications of QDs by reducing unwanted interactions with proteins and improving biocompatibility at the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call