Abstract

Electrochemical CO2 conversion to value-added fuels and chemicals enabled by suitable heterogeneous catalysts has attained great attention given its economic viability and overall process efficiency. Herein, we have designed a new electro-catalyst ER-Cu5-LDH/rGO using electro-reduction method from Cu5Al-CO3 hybrid LDH/GO precursor for efficient CO2 reduction reaction (CO2RR). Interestingly, the ER-Cu5-LDH/rGO catalyst presented a higher C2H4 production selectivity than the ER-Cu5-LDH catalyst without rGO. The obtained ER-Cu5-LDH/rGO exhibited a high C2H4 faradaic efficiency (FE) up to 54 % and a high C2H4 partial current density of ‒11.64 mA/cm2 at ‒1.2 V vs. RHE. It also exhibited excellent stability up to 50 h. The total FE of gaseous and liquid products for ER-Cu5-LDH/rGO is closed to 100 %. The morphological changes during CO2RR were monitored using SEM analyses for catalyst stability examination. The influence of electrolyte or pH on the electro-catalytic performance of ER-Cu5-LDH/rGO were studied. In order to reflect the superiority of LDH precursors, a control catalyst containing Cu2O supported on rGO (ER-Cu2O/rGO) was prepared and comparatively studied. Overall, our hybrid catalyst system ER-Cu5-LDH/rGO is very promising materials for CO2 conversion to C2H4, displaying remarkable FE, high C2H4 partial current density, and the excellent stability. Such a commendable behavior is ascribed to the excellent dispersion of active copper species as well as the superior electric conductivity of rGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.