Abstract

The toughening of cellulose fiber reinforced polypropylene (PP) was performed via adsorbing the cationic latex with core–shell structure onto chemithermomechanical pulp (CTMP) fibers as reinforcements, which is a novel approach for rendering the surface of cellulose fibers elastomeric. The mechanical, morphological and thermal properties of the resulting biocomposites, containing 40% (wt) of the modified fibers, were investigated. The results showed that with the increasing of the latex dosage up to 2% (wt on dry CTMP fibers), the impact, tensile and flexural strengths of the modified CTMP/PP biocomposites were significantly increased. The toughening mechanism was discussed based on the retarding of crack propagation and the promoting of crystallization of PP matrix (as revealed by DSC characterization). The overall performance of the biocomposite demonstrated that cationic latex-modified CTMP fiber is very effective in reinforcing thermoplastic-based biocomposites along with the synergetic effect on enhancing crystallinity of polymer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.