Abstract

Surface properties of chemithermomechanical pulp (CTMP) fibers produced from enzymatically pretreated eucalyptus wood chips prior to refining were investigated by Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscope (TEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that in a traditional CTMP refining process most fiber disruptions occur in the middle lamella (ML) leaving behind a significant amount of hydrophobic materials on the resulting fiber surface. However, in a Bio-CTMP refining process, fiber fractures preferentially take place in the primary (P) and secondary 1 (S1) layers or the S1 and secondary 2 (S2) layers, which results in more fibrillation being generated in the subsequent refining thus improving inter-fiber bonding strength and paper strength. XPS chemical composition analysis together with pulp physical strength property showed that the surfaces of Bio-CTMP fibers become enriched with a greater proportion of carbohydrates in comparison with CTMP fiber surface, which supports FE-SEM and TEM observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call