Abstract

To determine the validity of the non-invasive method of CT perfusion (CTP) in rat model of hepatic diffuse disease. Twenty-eight Wistar rats were divided into two groups. Liver diffuse lesions were induced by diethylnitrosamine in 14 rats of test group. Rats in control group were bred with pure water. From the 1st to 12th wk after the test group was intervened, both groups were studied every week with CTP. CTP parameters of liver parenchyma in different periods and pathologic changes in two groups were compared and analyzed. The process of hepatic diffuse lesions in test groups was classified into three stages or periods according to the pathologic alterations, namely hepatitis, hepatic fibrosis, and cirrhosis. During this period, hepatic artery flow (HAF) of control group declined slightly, mean transit time (MTT), blood flow (BF) and volume (BV) increased, but there were no significant differences between different periods. In test group, HAF tended to increase gradually, MTT prolonged obviously, BV and BF decreased at the same time. The results of statistical analysis revealed that the difference in the HAF ratio of test group to control group was significant. The ratio of BV and BF in test group to control group in stage of hepatitis and hepatic cirrhosis, hepatic fibrosis and early stage of hepatic cirrhosis was significantly different, but there was no significant difference between hepatitis and hepatic fibrosis. The main pathological changes in stage of hepatitis were swelling of hepatic cells, while sinusoid capillarization and deposition of collagen aggravated gradually in the extravascular Disse's spaces in stage of fibrosis and early stage of cirrhosis. The technique could reflect some early changes of hepatic blood perfusion in rat with liver diffuse disease and is valuable for their early diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.