Abstract

To use suitable objective methods of analysis to assess the influence of the combination of an integrated-circuit computed tomographic (CT) detector and iterative reconstruction (IR) algorithms on the visualization of small (≤3-mm) coronary artery stents. By using a moving heart phantom, 18 data sets obtained from three coronary artery stents with small diameters were investigated. A second-generation dual-source CT system equipped with an integrated-circuit detector was used. Images were reconstructed with filtered back-projection (FBP) and IR at a section thickness of 0.75 mm (FBP75 and IR75, respectively) and IR at a section thickness of 0.50 mm (IR50). Multirow intensity profiles in Hounsfield units were modeled by using a sum-of-Gaussians fit to analyze in-plane image characteristics. Out-of-plane image characteristics were analyzed with z upslope of multicolumn intensity profiles in Hounsfield units. Statistical analysis was conducted with one-way analysis of variance and the Student t test. Independent of stent diameter and heart rate, IR75 resulted in significantly increased xy sharpness, signal-to-noise ratio, and contrast-to-noise ratio, as well as decreased blurring and noise compared with FBP75 (eg, 2.25-mm stent, 0 beats per minute; xy sharpness, 278.2 vs 252.3; signal-to-noise ratio, 46.6 vs 33.5; contrast-to-noise ratio, 26.0 vs 16.8; blurring, 1.4 vs 1.5; noise, 15.4 vs 21.2; all P < .001). In the z direction, the upslopes were substantially higher in the IR50 reconstructions (2.25-mm stent: IR50, 94.0; IR75, 53.1; and FBP75, 48.1; P < .001). The implementation of an integrated-circuit CT detector provides substantially sharper out-of-plane resolution of coronary artery stents at 0.5-mm section thickness, while the use of iterative image reconstruction mostly improves in-plane stent visualization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call