Abstract

The purpose of this study was to develop an advanced computer-aided detection (CAD) scheme utilizing massive-training artificial neural networks (MTANNs) to allow detection of "difficult" polyps in CT colonography (CTC) and to evaluate its performance on false-negative (FN) CTC cases that radiologists "missed" in a multicenter clinical trial. The authors developed an advanced CAD scheme consisting of an initial polyp-detection scheme for identification of polyp candidates and a mixture of expert MTANNs for substantial reduction in false positives (FPs) while maintaining sensitivity. The initial polyp-detection scheme consisted of (1) colon segmentation based on anatomy-based extraction and colon-based analysis and (2) detection of polyp candidates based on a morphologic analysis on the segmented colon. The mixture of expert MTANNs consisted of (1) supervised enhancement of polyps and suppression of various types of nonpolyps, (2) a scoring scheme for converting output voxels into a score for each polyp candidate, and (3) combining scores from multiple MTANNs by the use of a mixing artificial neural network. For testing the advanced CAD scheme, they created a database containing 24 FN cases with 23 polyps (range of 6-15 mm; average of 8 mm) and a mass (35 mm), which were "missed" by radiologists in CTC in the original trial in which 15 institutions participated. The initial polyp-detection scheme detected 63% (15/24) of the missed polyps with 21.0 (505/24) FPs per patient. The MTANNs removed 76% of the FPs with loss of one true positive; thus, the performance of the advanced CAD scheme was improved to a sensitivity of 58% (14/24) with 8.6 (207/24) FPs per patient, whereas a conventional CAD scheme yielded a sensitivity of 25% at the same FP rate (the difference was statistically significant). With the advanced MTANN CAD scheme, 58% of the polyps missed by radiologists in the original trial were detected and with a reasonable number of FPs. The results suggest that the use of an advanced MTANN CAD scheme may potentially enhance the detection of "difficult" polyps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.