Abstract

A major challenge in computer-aided detection (CAD) of polyps in CT colonography (CTC) is the detection of "difficult" polyps which radiologists are likely to miss. Our purpose was to develop a CAD scheme incorporating massive-training artificial neural networks (MTANNs) and to evaluate its performance on false-negative (FN) cases in a large multicenter clinical trial. We developed an initial polyp-detection scheme consisting of colon segmentation based on CT value-based analysis, detection of polyp candidates based on morphologic analysis, and quadratic discriminant analysis based on 3D pattern features for classification. For reduction of false-positive (FP) detections, we developed multiple expert 3D MTANNs designed to differentiate between polyps and seven types of non-polyps. Our independent database was obtained from CTC scans of 155 patients with polyps from a multicenter trial in which 15 medical institutions participated nationwide. Among them, about 45% patients received FN interpretations in CTC. For testing our CAD, 14 cases with 14 polyps/masses were randomly selected from the FN cases. Lesion sizes ranged from 6-35 mm, with an average of 10 mm. The initial CAD scheme detected 71.4% (10/14) of "missed" polyps, including sessile polyps and polyps on folds, with 18.9 (264/14) FPs per case. The MTANNs removed 75% (197/264) of the FPs without loss of any true positives; thus, the performance of our CAD scheme was improved to 4.8 (67/14) FPs per case. With our CAD scheme incorporating MTANNs, 71.4% of polyps "missed" by radiologists in the trial were detected correctly, with a reasonable number of FPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call