Abstract
SO4 tetrahedral groups have weak polarization anisotropy, which thus results in the small birefringence of sulfates. Here, we report new sulfate CsY(SO4)2·4H2O with unprecedented birefringence among deep-ultraviolet (deep-UV) sulfates. Its single crystal (10 mm × 3.5 mm × 1.5 mm) was simply grown by an aqueous solution evaporation technique, and it features a rare layered structure composed of YO9 polyhedra, SO4 tetrahedra, and H2O molecules. Interestingly, each SO4 group donates two oxygen atoms to edge-share with one adjacent YO9 polyhedron and thus causes severe distortion of these groups. The characteristic edge-sharing mode gives CsY(SO4)2·4H2O a large birefringence of ∼0.045@546 nm, which is the maximum among deep-UV sulfates and phosphates with similar non-π-conjugated anionic groups. The ultraviolet-visible-near-infrared diffuse reflection and transmission spectra, infrared spectrum, thermal stability, and theoretical calculations are also presented. The fascinating results will improve our understanding of sulfates and may provide useful insights into the exploration of deep-UV sulfates with large birefringence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.