Abstract
Inorganic CsPbI3 perovskite has shown great promise in highly stable perovskite solar cells due to the lack of volatile organic components. However, the inferior phase stability in ambient conditions resulted from the very small Cs+, limiting their practical applications. Here, CsPbI3-based 2D Ruddlesden-Popper (RP) perovskites were developed using two thiophene-based aromatic spacers, namely, 2-thiophenemethylamine hydroiodide (ThMA) and 2-thiopheneformamidine hydroiodide (ThFA), which significantly improved the phase stability by releasing the large inner stress of black-phase CsPbI3. The optimized ThFA-based 2D RP perovskite (n = 5, ThFA-Cs) device achieves a record efficiency of 16.00%. Importantly, the ThFA-Cs devices could maintain an average of 98% of their initial efficiencies after being stored in N2 at room temperature for 3000 h and 92% of their initial value at 80 °C for 960 h. This work provides a new perspective for exploration of the phase-stable CsPbI3-based perovskite with reduced dimensions for high-performance solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.