Abstract

Two-dimensional (2D) Ruddlesden-Popper (RP) perovskites are attractive due to their appealing environmental stability. We demonstrate herein a spacer cation, 4-(aminoethyl)pyridine (4-AEP), for preparation of 2D RP perovskite films. The 4-AEP can not only act as a spacer cation but also coordinate with the Pb2+ ions in PbI2 with the nitrogen atom on the pyridine ring. High-quality 2D RP perovskite films can thus be formed as the coordination interaction retards the crystallization rate of the 2D RP perovskites. As a result, the solar cell employing the (4-AEP)2MAn-1PbnI3n+1 (n = 5) 2D perovskite achieves a power conversion efficiency (PCE) of 11.68% with good air stability, which is much better than the phenylethylamine spacer cation at the same conditions (PCE = 7.95%). This work provides a new idea for designing novel spacer cations toward efficient and stable 2D RP perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.