Abstract

We report the synthesis and characterizations of a new FeSe-based compound CsFe4-δSe4, which is closely related to alkali intercalated FeSe superconductors while exhibits distinct features. It does not undergo phase separation and antiferromagnetic transition. Powder neutron diffractions, electron microscopy and high-angle annular-dark-field images confirm that CsFe4-δSe4 possesses an ordered Cs arrangement as √2 × √2 superstructure, evidencing a B-centered orthorhombic lattice with a space group of Bmmm. The temperature-dependent powder neutron diffractions indicate no structural and magnetic transition from 320 to 5 K. In contrast to the symmetry-breaking in FeSe, this phase naturally possesses the orthorhombic symmetry even at room temperature. DFT calculations and transport measurements reveal a novel Fermi surface geometry with two electron-like sheets centered on Γ point and intermediate density of states at the Fermi level comparing with the value of FeSe and the superconducting A xFe2Se2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call