Abstract

The main purpose of the present work is to demonstrate mechanical performance of a wet-compression-molding (WCM) composite product through conventional compressive-strength-after-impact (CSAI) analysis. Biaxial non-crimp fabric (NCF) is utilized to manufacture laminated composite panels. Specimens are cut from the panels and tested to characterize fundamental mechanical properties of the NCF composite. The volume fractions of fibers and voids are also measured to evaluate the quality of the WCM product. Impact tests are carried out to examine impact resistance of the composite structure. Numerous impact characteristics at various energy levels are quantitatively measured. Internal failure patterns and damage extent are revealed via X-ray CT. Compression tests on the impacted plates are followed to evaluate structural integrity and damage tolerance (SIDT). 3D DIC technique is employed and distinct buckling responses dependent on impact energy levels are successfully visualized. Experimental results are showing a promising potential of the WCM process as one of the alternatives to the conventional autoclave-based fabrication method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call