Abstract

The microstructure of the martensite formed in Fe–Mn–Al–Ni alloys of varying composition, consisting of A2 austenite and A1-like martensite, was investigated by means of electron backscatter diffraction (EBSD). While sufficiently structured EBSD patterns clearly revealed a tetragonal distortion of the (twinned) martensite, robust indexing using Hough-transform-based methods were successful only by assuming a cubic symmetry of the martensite. It was shown that predictions made based on the Phenomenological Theory of Martensite Crystallography (PTMC) were well compatible with the experimental data, irrespective of the alloy composition. This includes a (near-)Pitsch orientation relationship and habit planes close to {110}A2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.