Abstract

We use the scanning-electron-microscope–electron-backscattering diffraction (SEM-EBSD), atomic force microscopy (AFM), and calculations based on the phenomenological theory of martensite crystallography (PTMC) to study two types of martensite observed in ceria-doped zirconia. The results indicate that a plate-type martensite has various habit planes such as {301}t, {100}t, and {10 1 0}t, which suggests the association of different lattice correspondences and lattice-invariant shears in PTMC. A pyramid-type martensite has only {301}t habit plane. The shape strains of the variants associated with these habit planes are effective in accommodating the shape strains of the transformation in the near-surface region, as proposed by Deville et al. (2004). Although pyramidal structures appear predominantly on surfaces near the (001)t plane, they also appear on surfaces near (100)t and (010)t planes. These results are understood from the shape strains calculated by the PTMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.