Abstract

AbstractUltra‐long GaN nanowires have been synthesized via a simple thermal evaporation process by heating mixed GaN and Ga2O3 powders in a conventional resistance furnace under ammonia gas at 1150 °C. The average length of GaN nanowires is estimated to be more than 100 μm after 30‐min growth, corresponding to a fast growth rate of more than 200 μm/h. Scanning electron microscope (SEM) observation indicated that the diameter of GaN nanowires was rather uniform along the growth direction and in the range of 100–200 nm. X‐ray diffraction (XRD) and transmission electron microscope (TEM) measurements confirmed that the GaN nanowires are crystalline wurtzite‐type hexagonal structure. Room‐temperature cathodoluminescence (CL) measurement indicated that an obvious red‐shift of the near band‐edge emission peak centered at 414 nm of the ultra‐long GaN nanowires and a wide shoulder in the range of 600–700 nm were observed. Possible reasons responsible for the red‐shift of the near band‐edge emission of the ultra‐long GaN nanowires was discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.