Abstract
The phenomenological theory of martensitic transformation is well understood that the displacive phase transformations are mainly influenced by the externally applied stress. Martensitic transformation occurs with 24 possible Kurdjomov-Sachs (K-S) variants, where each variant shows a distinct lattice orientation. The elegant transformation texture model of Kundu and Bhadeshia for crystallographic variant selection of martensite in metastable austenite at various stress/strain levels has been assessed in this present research. The corresponding interaction energies have also been evaluated. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed at different stress/strain levels. It has been investigated that the mechanical driving force alone is able to explain the observed martensite microtextures at all stress/strain levels under uniaxial tensile deformation of metastable austenite under low temperature at a slow strain rate. The present investigation also proves that the Patel and Cohen’s classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.