Abstract
In vertebrates, membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) on the cell surface are responsible for signal conversion and termination in purinergic signaling by extracellular nucleotides. Here we present apo and complex structures of the rat NTPDase2 extracellular domain and Legionella pneumophila NTPDase1, including a high-resolution structure with a transition-state analog. Comparison of ATP and ADP binding modes shows how NTPDases engage the same catalytic sitefor hydrolysis of nucleoside triphosphates and diphosphates. We find that this dual specificity is achieved at the expense of base specificity. Structural and mutational studies indicate that a conserved active-site water is replaced by the phosphate product immediately after phosphoryl transfer. Partial base specificity for purines in LpNTPDase1 is based on a different intersubunit base binding site for pyrimidine bases. A comparison of the bacterial enzyme in six independent crystal forms shows that NTPDases can undergo a domain closure motion of at least 17°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.