Abstract
The crossed lamellar microstructure of mollusk shells shows a very complex hierarchical architecture constituted of long rod-shaped aragonite crystals stacked parallel to each other inside each first order lamella, which are almost perpendicular to the ones contained in parallel neighboring lamellae. To better understand the construction and properties of the crossed lamellar microstructure we have performed a detailed study to determine the crystallographic characteristics and their evolution during shell growth using scanning electron microscopy, transmission electron microscopy and X-ray diffraction texture analysis. The arrangement of crystals is rationalized by a set of twin law relationships between aragonite crystals. Specifically, the aragonite rods, or third order lamellae within each first order lamella, internally consist of polysynthetic twins bounded by {1 1 0} mirror planes. In turn, the polysynthetically twinned aragonite crystals also show a constant crystallographic orientation with respect to aragonite crystals in adjacent first order lamellae. It can be seen as another twin law in which crystals from adjacent lamellae are bounded by (1 1 0) planes but with their c-axes rotated within this plane by 30°. Thus there are two sets of twin laws that relate crystal units at lower (third order lamellae) and higher (first order lamellae) length scales. These hierarchical relationships play a crucial role in the construction, organization and properties of this complex microstructure. The later orientational relationships have never been described in geological aragonite and are only found in biogenic materials with a crossed lamellar microstructure. Their occurrence is probably determined by the presence of shell organic components which regulate crystal growth and may favor unusual crystallographic relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.