Abstract

Crystallographic relations between different forms of boron nitride (BN) appearing at the high pressure–high temperature structural phase transformation have been revealed by high-resolution transmission electron microscopy (HRTEM). As starting materials, crystalline hexagonal BN (hBN) with different degrees of crystallinity, or with defects intentionally introduced, were used. Cubic BN (cBN) is formed only as a minor component, the rest consisting of different forms of sp 2 bonded BN: hBN, compressed, monoclinic deformed hBN, or turbostratic BN (tBN). The small cBN crystallites (300–400 nm) contain many defects such as twins, stacking faults and nanoinclusions of other BN forms: tBN, rhombohedral BN (rBN) and wurtzite BN (wBN). The cBN phase grows epitaxially on the basal plane of hBN. The nucleation sites for cBN are revealed by HRTEM. They consist of nanoarches (sp 3 hybridized, highly curved nanostructures), frequently observed at the edges of the hBN crystallites in the starting materials. Based on HRTEM observations of specimens not fully transformed, a nucleation and growth model for cBN is proposed which is consistent with existing theoretical and experimental models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.