Abstract

The microscopic deformation behavior is always been of significant interest in revealing the mechanism of the dwell fatigue effect. This study systematically characterized the deformation system activation in Ti–6Al–3Nb–2Zr–1Mo (Ti6321) alloy using in situ tensile and quasi-in situ dwell fatigue tests. The critical resolved shear stresses of the basal and prismatic slip systems in the Ti6321alloy were first calculated using the slip trace analysis method. The study demonstrated that, under dwell fatigue, basal and prismatic slips consist of major microscopic deformation modes. Most of the slip deformation occurred rapidly during the early stage of dwell fatigue and was independent of the dwell loading. The basal slip was found to be the predominant slip mode regardless of the dwell conditions. The results suggested that the elastic anisotropy of the hexagonal-closed-packed (HCP) structure could lead to heterogeneous microscopic stress, thus activating more basal slip activities. Such activities were found to participate in the crack initiation through two unique cracking modes: basal plane crack and (0001) twist boundary crack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.