Abstract

Multicomponent silicate bioactive glass (BG) (53SiO2‐20CaO‐6Na2O‐4P2O5‐12K2O‐ 5MgO in wt. %) (13–93 composition) was prepared via the sol–gel process. The influence of thermal treatment on the crystallization was evaluated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray nano-computed tomography (nano-CT). The temperature and time of the thermal treatment strongly influenced the formation of the crystalline phases. The preliminary outcomes demonstrate the possibility of tailoring the crystallinity of 13–93 BG powder in the range 5–43 wt. % by controlling the temperature and time of the heat treatment. The microstructure of powders sintered at two different temperatures (650 °C and 700 °C from 30 min to 4 h) was evaluated by TEM. X-ray nano-computed tomography (nano-CT) was used to visualize the 3D morphology and distribution of crystallization areas in the samples in powder form. A large range between the glass transformation and the crystallization temperatures is observed, which provides the prospect of a suitable material to manufacture directly 3D structures (e.g. porous scaffolds) without an intermediate processing step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call