Abstract

One key issue influencing a broader application of Bioglass 45S5 in tissue engineering is its inherent crystallization tendency, severely limiting the mechanical strength of 3D porous scaffolds. Despite numerous studies, Bioglass 45S5 crystallization is not yet fully understood with regard to the mechanisms involved or morphology of the crystal phases forming. Here we show how two cutting-edge imaging techniques, state-of-the-art transmission electron microscopy (TEM) with image correction including energy dispersive X-ray spectroscopy and X-ray nano-computed tomography (nano-CT), allowed us to visualize changes in microstructure from near-nucleation to almost full crystallization in bulk Bioglass 45S5. At early times of heat treatment at 660 °C the formation of phase-separated nano-droplets within the glassy matrix was observed. Later, besides surface crystallization, bulk crystallization of combeite spheres was predominant. The formation of the first combeite spheres, their coarsening with time and finally their merging at near full crystallization were recorded by in situ high-temperature optical microscopy videos. The 3D nature of these spheres was confirmed by nano-CT, while TEM showed that their internal structure was composed of sub-micron grains. X-ray diffraction analysis at early time points showed a much higher crystalline fraction in bulk samples compared to powder samples, highlighting the influence of processing and sample morphology. These results show the importance of using complementary techniques for gaining insight into the crystallization process in the volume. In addition, we show that TEM and nano-CT are suitable characterization techniques to visualize the crystallization even in fast crystallizing systems, such as bioactive glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.