Abstract

The essential helicase loader protein G39P encoded by Bacillus subtilis SPP1 phage has been overproduced in Escherichia coli and purified. The wild-type protein has been crystallized by the hanging-drop vapour-diffusion method in a primitive hexagonal space group, probably P6(1)22/P6(5)22, but the crystals diffract to only 3.4 A and are poorly reproducible. Mass-spectrometric analysis has revealed marked proteolytic cleavage from the C-terminus and the presence of a major species corresponding to deletion of the 14 C-terminal residues. Thus, a new variant of the protein (G39P112) has been engineered that corresponds to a 14-residue C-terminal truncation. The G39P112 variant has also been crystallized but now in a primitive orthorhombic form, probably P2(1)2(1)2 or P2(1)2(1)2(1), with unit-cell parameters a = 85.6, b = 89.7, c = 47.6 A, with diffraction to 2.4 A on a synchrotron source and with greatly improved reproducibility. Calculation of V(M) values for this G39P112 variant suggests the presence of three monomers in the asymmetric unit, corresponding to a solvent content of about 47%. A selenomethionine-incorporated form of the protein has been produced and a full three-wavelength MAD data collection undertaken.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.