Abstract

We report rheological, microscopic, and calorimetric studies of the crystallization of long chain n-paraffins and their mixtures from model waxy oils and the effect of microcrystalline poly(ethylene-butene) (PEB) random copolymers. Optical micrographs and differential scanning calorimetry (DSC) reveal that the crystals formed from decane solutions of binary mixtures of C36 + C32 and of C32 + C28 are of mixed composition, whereas solutions of C28 + C24, C36 + C28, C32 + C24, and C36 + C24 form separate crystal phases. There is no miscibility when the difference in carbon number between two long chain n-paraffins Δnc > 4. These findings agree with Kravchenko's prediction for crystallization of molten binary n-alkane mixtures. However, the crystallization of long chain n-paraffins from decane solution gives a stable crystal structure directly, while from the melt it tends to pass through a metastable rotator phase. Since PEB can either self-assemble into a needlelike structure or cocrystallize with long chai...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.