Abstract

Tellurite glasses of the system (100–x)TeO2–xBaO, with x = 05, 10, 15 and 20 wt%, have been prepared and studied by differential scanning calorimetry (DSC). The crystallization kinetics of the glasses were investigated under non-isothermal conditions, applying the formal theory of transformations for heterogeneous nucleation to the experimental data obtained by DSC, using continuous-heating techniques. In addition, from the dependence of the glass-transition temperature (T g) on heating rate, the activation energy for the glass transition was derived. Similarly, the activation energy of the crystallization process was determined and the crystallization mechanism characterized. The thermal stability of these glasses are considered in terms of the characteristic temperatures, T g and T in (the onset temperature of crystallization), via ΔT = T in−T g and a kinetic parameter K(T g). The results confirm that thermal stability decreases with increasing BaO content. The phases into which the glass crystallizes have been identified by X-ray diffraction. Diffractograms of the transformed material indicate the presence of microcrystallites of α-TeO2, γ-TeO2 and BaTeO3 in the remaining amorphous matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call