Abstract

Carbon-based mesoscopic perovskite solar cells (MPSCs) are becoming one of the most competitive photovoltaic technologies owing to their lower manufacturing cost and excellent stability. In this work, methylammonium acetate (MAAc), an ionic liquid additive, is added into methylammonium lead triiodide (MAPbI3) perovskite and is used to fabricate high-performance MPSCs. Systematic and detailed studies have shown that the MAAc interacts with PbI2 preferentially to form a MAPbI3-x(Ac)x intermediate phase that can effectively control the crystallization kinetics of MAPbI3 in the triple-mesoscopic layer. MAPbI3 films with an appropriate amount of MAAc exhibit higher crystallinity, lower defect density, and dense pore filling, which effectively reduce carrier non-radiative recombination loss in MPSCs. As a result, a champion power conversion efficiency (PCE) of 13.54% is obtained based on the optimized MAAc-engineered MPSCs. The PCE is 24% higher than 10.90% of the control devices. Moreover, unencapsulated MAAc-engineered MPSCs retain 90% of their initial PCE after being stored in the dark for 50 days under ambient atmosphere, which demonstrates much better air stability than control devices. This work provides an effective strategy for developing efficient and stable carbon-based MPSCs with an eco-friendly ionic liquid additive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.