Abstract

Within the framework of the Swift-Hohenberg model it is shown numerically and analytically that the front propagation between cellular and uniform states is determined by periodic nucleation events triggered by the explosive growth of the localized zero-eigenvalue mode of the corresponding linear problem. We derive an evolution equation for this mode using asymptotic analysis, and evaluate the time interval between nucleation events, and hence the front speed. In the presence of noise, we find the velocity exponent of "thermally activated" front propagation (creep) beyond the pinning threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.