Abstract

The problem of front propagation in a stirred medium is addressed in the case of cellular flows in three different regimes: slow reaction, fast reaction and geometrical optics limit. It is well known that a consequence of stirring is the enhancement of front speed with respect to the nonstirred case. By means of numerical simulations and theoretical arguments we describe the behavior of front speed as a function of the stirring intensity, U. For slow reaction, the front propagates with a speed proportional to U(1/4), conversely for fast reaction the front speed is proportional to U(3/4). In the geometrical optics limit, the front speed asymptotically behaves as U/ln U. (c) 2002 American Institute of Physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.