Abstract

The influence of BaO content (up to 15 mol%) on the crystallization behaviour, structure, thermal properties and microwave dielectric properties of the BaO-CaO-B2O3-SiO2 glasses and glass-ceramics system was investigated. The glasses were produced by melting at 1400 °C and quenching into water, and the glass-ceramics were produced via heat treatment at temperatures between 750 and 800 °C. The results of X-ray diffraction analysis showed that increasing the BaO content raised the resistance of the glass against crystallization and favoured the transformation of β-CaSiO3 and α-CaSiO3 phases, which crystallized in the Ba-free and in low BaO content compositions, into SiO2 and Ba4Si6O16, which crystallized in compositions with higher concentrations of BaO. The BaO content had little influence on the glass transition temperature (Tg) and the linear coefficient of thermal expansion (CTE), but strongly reduced the softening point (Ts). Even the addition of BaO as minor additives resulted in a dramatic reduction of the Ts; for example, the Ts decreased from 902 °C for the Ba-free composition to 682 °C for the BaO-containing one (5%). Low values of the dielectric constant (5.9 ≤ εr ≤ 6.63) and dielectric loss (1.12 × 10−3 ≤ tanδ ≤ 3.15 × 10−3) were measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.