Abstract

Biodegradable poly(butylene succinate-co-2-methyl succinate) (PBSMS)/cellulose nanocrystals (CNC) composites were successfully prepared at low CNC loadings with the aims of improving crystallization and mechanical properties and extending the practical application of PBSMS. CNC is finely dispersed in the PBSMS matrix without obvious aggregations. The low content of CNC obviously promoted the crystallization behavior of PBSMS under different conditions. The spherulitic morphology study revealed that CNC, as an effective heterogeneous nucleating agent, provided more nucleation sites during the melt crystallization process. In addition, the nucleation effect of CNC was quantitatively evaluated by the following two parameters, i.e., nucleation activity and nucleation efficiency. The crystal structure and crystallization mechanism of PBSMS remained unchanged in the composites. In addition, as a reinforcing nanofiller, CNC significantly increased Young's modulus and the yield strength of PBSMS. The crystallization behavior and mechanical properties of PBSMS were significantly improved by the low content of CNC, which should be interesting and essential from the perspective of biodegradable polymer composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.