Abstract

For protein-DNA complex crystallization, the choice of the DNA fragment is crucial. With the aim of crystallizing the 31 kDa Fpg DNA-repair enzyme bound to DNA, oligonucleotide duplexes varying in length, sequence, end type and nature of the specific DNA target site were used. Crystals of several protein-DNA combinations grew from solutions containing both polyethylene glycol and salt. This systematic crystallization screening followed by optimization of the crystallization conditions by microseeding led to crystals of Fpg bound to a 13 base-pair duplex DNA carrying the 1,3-propanediol abasic site analogue which are suitable for crystallographic analysis. Complete native data sets have been collected to 2.1 A resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.