Abstract

Mantle-derived xenoliths from the Marsabit shield volcano (eastern flank of the Kenya rift) include porphyroclastic spinel peridotites characterized by variable styles of metasomatism. The petrography of the xenoliths indicates a transition from primary clinopyroxenebearing cryptically metasomatized harzburgite (light rare earth element, U, and Th enrichment in clinopyroxene) to modally metasomatized clinopyroxene-free harzburgite and dunite. The metasomatic phases include amphibole (low-Ti Mg-katophorite), Na-rich phlogopite, apatite, graphite and metasomatic low-Al orthopyroxene. Transitional samples show that metasomatism led to replacement of clinopyroxene by amphibole. In all modally metasomatized xenoliths melt pockets (silicate glass containing silicate and oxide microphenocrysts, carbonates and empty vugs) occur in close textural relationship with the earlier metasomatic phases.The petrography, major and trace element data, together with constraints from thermobarometry and fO2 calculations, indicate that the cryptic and modal metasomatism are the result of a single event of interaction between peridotite and an orthopyroxene-saturated volatile-rich silicate melt. The unusual style of metasomatism (composition of amphibole, presence of graphite, formation of orthopyroxene) reflects low P^ T conditions (� 850^10008 Ca t51� 5 GPa) in the wall-rocks during impregnation and locally low oxygen fugacities. The latter allowed the precipitation of graphite from CO2.The inferred melt was possibly derived from alkaline basic melts by melt^rock reaction during the development of the Tertiary^Quaternary Kenya rift. Glassbearing melt pockets formed at the expense of the early phases, mainly through incongruent melting of amphibole and orthopyroxene, triggered by infiltration of a CO2-rich fluid and heating related to the magmatic activity that ultimately sampled and transported the xenoliths to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.