Abstract
Increasing visible light absorption of wide-bandgap photocatalysts (for example, ZnO and TiO2) plays a pivotal role in improving their photocatalytic activity. In this work, we show that substitutional nitrogen doping can be realized in semi-crystalline zinc oxide (ZnO) nanoparticles but fails for highly crystalline ZnO by heating the ZnO at a temperature of 400°C in gaseous ammonia atmosphere. The results suggest that substitutional nitrogen for lattice oxygen is strongly dependent on the crystallinity of ZnO. The nitrogen doped ZnO obtained shows an improved visible light photocatalytic activity in the degradation of organic dyes due to its increased visible light absorption. The origin of the increased visible light absorption is theoretically attributed to the formed N 2p localized states in the bandgap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.