Abstract

To better understand the system and conversion of cellulose allomorphs, cellulose III nanocrystals (CNC-III) were used to investigate the crystalline stability of cellulose III in the hydrothermal condition and a lower concentrated NaOH-water system. It was shown that H2O or alkali played an important role in the process of polymorphic transformation. The CNC-III allomorph turned back to cellulose I with an extremely low crystallinity (∼4.18 %) during hydrothermal process at 90–95 °C, or cellulose II when the temperature excessed boiling point (≥100 °C). Furthermore, CNC-III could be rapidly dissolved in an aqueous NaOH (∼7 wt.%) without a pre-cooled treatment to obtain its stable solution. Afterwards, cellulose II with a steady average crystallite size (∼34) was acquired after the regeneration process via dialysis with distilled water. The polymorphic transformation was also analyzed by X-ray diffraction (XRD), solid-state 13C nuclear magnetic resonance (13C NMR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.