Abstract

This paper presents an easy way to obtain a material with CO 2 sorption properties by using commercially available MCM-41. In order to increase MCM-41 CO 2 sorption capacity, 2.48 mmol g −1 of amine groups were anchored onto silica surface. A few carefully chosen spectroscopic techniques – namely infrared diffuse reflectance spectroscopy and solid-state 13C and 29Si nuclear magnetic resonance – demonstrated that amino groups are covalently bounded to mesoporous silica and not just adsorbed on it. CO 2 uptake by the samples was investigated by microcalorimetry experiments performed at 30 °C. The amine functionalized material, MCM-41-NH 2, exhibited a higher uptake of CO 2 at very low pressures compared with the nongrafted material. The modified material presented heat of adsorption of −98 versus −32 kJ mol −1 for MCM-41 at low pressures. The mode of CO 2 uptake in MCM-41-NH 2 was both chemisorption at low pressures and physisorption at high pressures. Solid-state 13C nuclear magnetic resonance performed on amine-functionalized MCM-41 after CO 2 adsorption experiments, showed a signal attributed to carbamate that was formed as a product of the reaction between CO 2 and amine groups. This material has potential for CO 2 recovery at low pressures/concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call