Abstract
Solvent-free synthesis method in zeolite preparation can largely decrease the generation of wastewater and improve the zeolite yield by simply grinding and hydrothermal treatment for the solid raw materials, and accordingly is considered as one of the most promisingly green and sustainable synthesis strategy for the metal-doped zeolite materials. However, there are scarcely any reports on the solvent-free synthesis and catalytic application of tungsten-doped zeolite materials. In this work, tungsten-doped MFI zeolites were prepared with solvent-free synthesis method and used as heterogeneous catalyst for cyclohexene epoxidation reaction. The synthesized tungsten-doped MFI zeolites displayed a monoclinic (P21/n) space group attributed to the successful incorporation of tungsten atom into MFI framework and meanwhile possessed an enormous number of irregular mesopores ranging from 2 nm to 50 nm. The influence of TPAOH addition amount on the mesopore structure and properties of tungsten-doped MFI zeolite was further investigated. In addition, the crystallization process of tungsten-doped MFI zeolite sample was tracked and analyzed with SEM, XRD and BET characterizations, and accordingly possible formation process for hierarchical zeolite was proposed. Furthermore, the prepared hierarchical tungsten-doped MFI zeolite displayed eminent cyclohexene epoxidation performance and re-usability for more than five times. This work provides some guidance for the solvent-free synthesis of metallosilicate zeolites, decreasing the generation of wastewater and improving the zeolite yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.