Abstract

Low-density aerogel materials are a promising platform for delivering lipophilic drugs with poor water solubility, but to date, the loading of aerogels with pharmaceuticals in crystalline form has not been reported other than by expensive supercritical loading techniques. Here, we demonstrate a simple and low-cost liquid-phase impregnation method to load the model drug coenzyme Q10 (CoQ10) within carbon aerogels. By controlling the chemical microstructure of the aerogel to exhibit π-conjugated (sp2) bonding via addition of graphene oxide, the rate of adsorption and total loading of CoQ10 is significantly enhanced. Furthermore, the adsorbed CoQ10 adopts an as-yet unreported crystalline phase that differs from the bulk material, not only offering the potential advantages of crystalline materials for drug delivery, but also a means to control the microstructure of this important lipophilic pharmaceutical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.