Abstract
Herein we report the crystal structures of two benzodiazepines obtained by reacting N,N'-(4,5-diamino-1,2-phenylene)bis(4-methylbenzenesulfonamide) (1) or 4,5-(4-methylbenzenesulfonamido)benzene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepine, C26H30N4O4S2 (2), and 2,2,4-trimethyl-8,9-bis(4-methylbenzenesulfonamido)-2,3-dihydro-5H-1,5-benzodiazepin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl-·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal diamines present in the molecular structures, forming a 5H-1,5-benzodiazepine ring. In the crystal structure of 2, the seven-membered ring of benzodiazepine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline compounds, the tosylamide N atoms are not in resonance with the arene ring, mainly due to hydrogen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supramolecular level, the crystal structure is maintained by a combination of hydrogen bonds and hydrophobic interactions. In 2, amine-to-tosyl N-H...O and amide-to-imine N-H...N hydrogen bonds can be observed. In contrast, in 3, the chloride counter-ion and water molecule result in most of the hydrogen bonds being of the amide-to-chloride and ammonium-to-chloride N-H...Cl types, while the amine interacts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section C, Structural chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.