Abstract
The structures of the six perrhenates (AReO4 A = Ag, Na, K, Rb, Cs and Tl) at room temperature have been established using powder neutron diffraction methods. These demonstrate the rigid nature of the ReO4 tetrahedra, with the Re-O distances decreasing very slightly and the O-Re-O bond angles approaching the regular tetrahedron value of 109.5° as the size of the A-type cation increases. Variable temperature synchrotron X-ray diffraction measurements show that RbReO4 undergoes a I41/a to I41/amd transition near 650 K that is associated with a change in the orientation of the ReO4- tetrahedra about the scheelite b-axis associated with a Γ3+ mode. CsReO4 has an orthorhombic pseudo scheelite structure at room temperature with rotation of the ReO4 tetrahedra about the c-axis described by mode M4+ and this undergoes a first order orthorhombic to tetragonal (Pnma to I41/a) transition near 450 K with a transition to the I41/amd structure occurring above this. TlReO4 is a rare example of a crystalline material displaying a re-entrant phase transition; 141/a to P21/c to 141/a. The monoclinic structure can be described as a scheelite superstructure that contains an ordering of tetrahedral rotations around the c-axis and along the b-axis with the irrep Γ3+ and M4+ both present. This behaviour is different to that described recently for the analogous Tc oxide TlTcO4, which highlights the differences in the chemistry of these two systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have